A Hypervalent Phosphorane-Palladium Cation Complex Bearing Benzaldehyde \dagger

Koichiro Toyota, Yohsuke Yamamoto and Kin-ya Akiba*

Department of Chemistry, Faculty of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
$\left[\mathrm{Rf}_{2} \mathrm{PPd}(\mathrm{PhCHO})\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]+\mathrm{SbF}_{6}-\left[\mathrm{Rf}=\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O}\right] \quad 5$ is prepared by the reaction of $\mathrm{Rf}_{2} \mathrm{PPdCl}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) 1$ with AgSbF_{6} in the presence of benzaldehyde in 92% yield, and the structure determined by X -ray diffraction analysis.

Palladium cations have attracted interest recently in organic synthesis as chiral Lewis acids ${ }^{1}$ and in polymerization catalysts. ${ }^{2}$ Although the isolation and structural characterization of several palladium(II) cations ${ }^{3}$ have been reported and intermediacy of some carbonyl and imine complexes postulated, ${ }^{4}$ there has been no report on the crystal structure of those bearing an aldehyde. During the course of our investigation on compounds bearing a hypervalent Group 15 element-transition metal bond; ${ }^{5}$ we isolated several five-coordinate antimony(v) compounds bearing an $\mathrm{Sb}-\mathrm{Fe}$ bond. Here we report the synthesis, structures and some reactions of five-coordinate phosphorus(v) compounds bearing palladium(II) cations. Especially the stable palladium(II) cation 5 with benzaldehyde, which is the first example of a fully structurally characterized palladium cation-aldehyde complex, is interesting not only in relation to the structure, but also as to the possibility that novel chiral catalysts bearing a hypervalent Group 15 elementpalladium bond can be prepared based on our recent isolation of chiral hypervalent phosphoranes with a chiral center only at the phosphorus atom. ${ }^{6}$

First we tried to synthesize $\mathrm{Rf}_{2} \mathrm{PPdCl}\left(\mathrm{PR}_{3}\right)_{2} \quad[\mathrm{Rf}=$ $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O}, \mathrm{R}=\mathrm{Ph}$ or Me] by the reaction of lithium phosphoranide $\mathrm{Rf}_{2} \mathrm{P}^{-} \mathrm{Li}^{+}$, generated in situ from the reaction of $\mathrm{Rf}_{2} \mathrm{PH}$ with $\mathrm{Bu}{ }^{t} \mathrm{Li}$ at $-78^{\circ} \mathrm{C}$, with $\mathrm{PdCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}$. However, these complexes were too unstable
to isolate. Fortunately, when we used PdCl_{2} $\left(\mathrm{R}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}\right)(\mathrm{R}=\mathrm{Ph}$ or Me$)$ as a starting material, stable $\quad \mathrm{Rf}_{2} \mathrm{PPdCl}\left(\mathrm{R}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}\right) \quad(\mathrm{R}=\mathrm{Ph}, \quad 82 \% \quad \mathbf{1}$; $\mathrm{R}=\mathrm{Me}, 73 \% 2$) were obtained in good yields (Scheme 1).

Suitable crystals of these complexes for X-ray diffraction analysis were obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane at low temperatures. The results showed a square planar structure at the palladium atom and a trigonal bipyramidal structure at the hypervalent phosphorus atom in both cases, and the ORTEP drawing of $\mathrm{Rf}_{2} \mathrm{PPdCl}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathbf{1}$ and crystal data are omitted by shortening.

The reaction of complexes $\mathbf{1}$ and $\mathbf{2}$ with AgSbF_{6} in the presence of Lewis bases gave stable palladium cation complexes $\left[\mathrm{Rf}_{2} \mathrm{PPd}(\mathrm{L})\left(\mathrm{R}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}\right)\right]^{+} \mathrm{SbF}_{6}{ }^{-}(\mathrm{R}=\mathrm{Ph}, \mathrm{L}=$ $\mathrm{MeCN}, ~ 96 \% ~ 3 ; ~ R=P h, ~ L=M e_{3} \mathrm{P}, 93 \% 4, \quad \mathrm{R}=\mathrm{Ph}$, $\mathrm{L}=\mathrm{PhCHO}, \quad 92 \% ; 5 \mathrm{R}=\mathrm{Me}, \quad \mathrm{L}=\mathrm{MeCN}, \quad 89 \% \quad 6$; $\mathrm{R}=\mathrm{Me}, \mathrm{L}=\mathrm{PhCN}, 83 \% 7$) in high yields (Scheme 1). Although we were able to isolate 5, $\left[\mathrm{Rf}_{2} \mathrm{PPd}(\mathrm{PhCHO})\right.$ $\left.\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right)\right]^{+} \mathrm{SbF}_{6}{ }^{-}$could not be isolated from the reaction of $\mathrm{Rf}_{2} \mathrm{PPdCl}\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right) \mathbf{2}$ with AgSbF_{6} in the presence of benzaldehyde, probably because of the strong electron-donating property of 1,2 -bis(dimethylphosphino)ethane and the weak coordinating ability of the aldehyde (see below). The IR spectrum of $\mathbf{5}$ showed the $\mathrm{C}=\mathrm{O}$ stretching frequency at $1629 \mathrm{~cm}^{-1}(\mathrm{KBr})$ which

Scheme 1

[^0]is lowered by $72 \mathrm{~cm}^{-1}$ than that for free benzaldehyde (1701 $\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$. In the ${ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ the signal of the $\mathrm{C}=\mathrm{O}$ carbon was observed at $\delta 202$, at lower field than that of free benzaldehyde $\delta 192$. These results are consistent with the Lewis acidity of the palladium cation

Fig. 1 Molecular structure of complex 5. Selected bond lengths (\AA) and angles (${ }^{\circ}$): Pd1-O3 2.170(3), Pd1-P1 2.371(1), Pd1-P2 2.249(1), Pd1-P3 2.352(1), P1-O1 1.780(3), P1-O2 1.851(3), P1-C1 1.831(3), P1-C10 1.845(3); O3-Pd1-P1 88.2(1),
O3-Pd1-P2 173.1(1), O3-Pd1-P3 90.9(1), P1-Pd1-P2 98.0(1), P1-Pd1-P3 171.1(1), P2-Pd1-P3 83.3(1), O1-P1-O2 177.3(2)
$\left[\mathrm{Rf}_{2} \operatorname{PPd}(\mathrm{dppe})\right]^{+}$and the data for other Lewis acid-aldehyde complexes such as $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PhCHO}$, $\left[\mathrm{CpFe}(\mathrm{CO})_{2}(\mathrm{PhCHO})\right]^{+} \mathrm{PF}_{6}{ }^{-}$, and $\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right) \mathrm{Cl}_{3}(\mathrm{PhCHO})-$ $\left(\mathrm{OEt}_{2}\right){ }^{7}$ Suitable crystals of complex $\mathbf{5}$ for structural analysis were obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3}$ in a freezer. The ORTEP drawing for complex 5 is shown in Fig. 1. The geometry around the palladium atom is square planar and that of the hypervalent phosphorus atom is trigonal bipyramidal. Thus, the structures of $\mathbf{1}$ and $\mathbf{5}$ are essentially the same. The benzaldehyde is coordinated to the palladium atom in $\sigma\left(\eta^{1}\right)$ fashion, and the plane of the aldehyde is perpendicular to the plane of the palladium which is defined by $\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{P}(3)-\mathrm{O}(3)$. The $\mathrm{Pd} 1-\mathrm{O} 3$ bond length $[2.170(3) \AA$] in 5 is longer than that in palladium alkoxide $[2.046(2)-2.106(3) \AA]^{8}$ or palladium cation-ketone complexes $[2.101(5)-2.116(5) \AA],{ }^{3}$ indicating that the interaction between the palladium cation and the oxygen of the benzaldehyde is not so strong as that of ketones. This weak coordination may be a reason why 5 did not react with excess of acetophenone silyl enol ether at room temperature for 1 d . However, 5 did react with MeLi at $-94^{\circ} \mathrm{C}$ to give 1-phenylethanol quantitatively.

Synthesis of a chiral complex, which corresponds to 5, and the asymmetric induction by chiral 5 are currently under investigation.

Experimental

Preparation of complexes $\mathbf{1}$ and $\mathbf{2}$. $-\left[\mathrm{Rf}_{2} \mathrm{P}^{-} \mathrm{Li}^{+}\right.$was generated in situ by treatment of $\mathrm{Rf}_{2} \mathrm{PH}(504 \mathrm{mg}, 0.98 \mathrm{mmol})$ with $\mathrm{Bu}^{\mathrm{t}} \mathrm{Li}(1.64$ M in n-pentane, $0.60 \mathrm{~mL}, 0.98 \mathrm{mmol}$) in THF (15 mL) at $-78^{\circ} \mathrm{C}$ for 10 min and $\mathrm{PdCl}_{2}($ dppe $)(564 \mathrm{mg}, 0.98 \mathrm{mmol})$ was added. The mixture was stirred for 1 h at room temperature and was filtered. Complex $1(848 \mathrm{mg}, 0.80 \mathrm{mmol})$ was obtained in 82% yield in a pure form after chromatography $\left[\mathrm{SiO}_{2}\right.$, benzene] and $\mathbf{2}$ was obtained by similar procedures; $\mathbf{1}$ [mp ca. $245^{\circ} \mathrm{C}$ (decomp.) and $\mathbf{2}$ [mp ca. $250^{\circ} \mathrm{C}$ (decomp.] gave satisfactory elemental analyses
for C, H and N . Complex 1: ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-74.3(\mathrm{q}, 3 \mathrm{~F}$, $J=10),-74.2(\mathrm{q}, 3 \mathrm{~F}, J=10),-73.4(\mathrm{q}, 3 \mathrm{~F}, J=10),-72.9$ (q, $3 \mathrm{~F}, J=10$); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.6$ (dd, $1 \mathrm{P}, J=12,750$), 47.8 (dd, $1 \mathrm{P}, J=24,750$), 52.4 (dd, $1 \mathrm{P}, J=12,24$). Complex 2: ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-75.1(\mathrm{q}, 3 \mathrm{~F}, J=9),-74.6(\mathrm{q}, 3 \mathrm{~F}$, $J=9),-73.9(\mathrm{q}, 3 \mathrm{~F}, J=9),-73.1(\mathrm{q}, 3 \mathrm{~F}, J=9) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.1(\mathrm{dd}, 1 \mathrm{P}, J=17,745), 44.7(\mathrm{dd}, 1 \mathrm{P}, J=17,22)$, 51.9 (dd, $1 \mathrm{P}, J=17,745$).

Preparation of Complex 5.-Complex $1(420 \mathrm{mg}, 0.40 \mathrm{mmol})$ was added to a solution of $\mathrm{AgSbF}_{6}(137 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) at room temperature. After 20 min , benzaldehyde $(0.20 \mathrm{~mL}$, 2.00 mmol) was added and the mixture was stirred for 3.5 h . Filtration of the reaction mixture after addition of $\mathrm{Et}_{2} \mathrm{O}$ gave analytically pure cation complex $5[494 \mathrm{mg}, 0.36 \mathrm{mmol}, 92 \%$, mp ca. $130{ }^{\circ} \mathrm{C}$ (decomp.] as yellow precipitates. Other cation complexes 3, 4, 6, and 7 were obtained by similar procedures and will be reported later in detail. All cation complexes gave satisfactory elemental analyses for C, H and N . Complex 5: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{PhCHO}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-77.0$ (br q, 6 F), -75.9 (br q, 6 F); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 1.0$ (br dd, 1 P), $50.6(\mathrm{dd}, 1 \mathrm{P}, J=20,613 \mathrm{~Hz}), 55.7(\mathrm{br} \mathrm{dd}, 1 \mathrm{P}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 202(\mathrm{~m}, 1 \mathrm{C}, \mathrm{PhCHO}) ; \mathrm{IR}(\mathrm{KBr}, v \mathrm{C}=\mathrm{O}) 1629$ cm^{-1}.
Crystal Data for Complex 5.3CHCl 3 . $-\mathrm{C}_{54} \mathrm{H}_{41} \mathrm{~F}_{18} \mathrm{O}_{3} \mathrm{Cl}_{9} \mathrm{P}_{3} \mathrm{PdSb}$, $M=1720.07$, triclinic, space group $P \overline{1}, \quad a=11.614(1)$, $b=15.0900(9), \quad c=20.965(2) \AA, \quad \alpha=99.037(5), \quad \beta=98.537(4)$, $\gamma=110.692(5)^{\circ}, \quad U=3310.8 \AA^{3}, \quad Z=2, \quad D_{\mathrm{c}}=1.53 \quad \mathrm{~g} \quad \mathrm{~cm}^{-3}$, $T=200$ K. Crystal data were collected on a Mac Science DIP2030 imaging plate equipped with graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$. Unit cell parameters were determined by autoindexing several images in each data set separately with the program DENZO. ${ }^{9}$ For each data set, rotation images were collected in 3° increments with a total rotation of 180° about ϕ. Data were processed by using SCALEPACK. ${ }^{9}$ The structures were solved by a direct method with the program Crystan-GM (Mac Science) and by refined full-matrix least squares. Final $R 1=0.063(R w=0.076)$ for 8944 observed reflections (1002 parameters) with $I>3 \sigma(I)$. Full crystallographic details, excluding structure factors, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Research (S), 1999, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 423/21.

Received, 2nd March 1999
Paper E/9/01668F

References

1 M. Sodeoka, K. Ohrai, and M. Shibasaki, J. Org. Chem., 1995, 60, 2648; M. Sodeoka, R. Tokunoh, F. Miyazaki, E. Hagiwara and M. Shibasaki, Synlett, 1997, 463.
2 L. K. Johnson, C. M. Killian, and M. Brookhart, J. Am. Chem. Soc., 1995, 117, 6414; J. Feldman, S. J. McLain, A. Parthasarathy, W. J. Marshall, J. C. Calabrese and S. D. Arthur, Organometallics, 1997, 16, 1514.
3 J. S. Brumbaugh, R. R. Whittle, M. Parvez, and A. Sen, Organometallics, 1990, 9, 1735; R. D. Dghaym, K. J. Yaccato and B. A. Arndtsen, Organometallics, 1998, 17, 4.
4 L. K. Johnson, S. Mecking, and M. Brookhart, J. Am. Chem. Soc., 1996, 118, 267; E. Hagiwara, A. Fujii and M. Sodeoka, J. Am. Chem. Soc., 1998, 120, 2474.

5 Y. Yamamoto, M. Okazaki, Y. Wakisaka, and K.-y. Akiba, Organometallics, 1995, 14, 3364.
6 S. Kojima, K. Kajiyama and K.-y. Akiba, Bull. Chem. Soc. Jpn., 1995, 68, 1785; Tetrahedron Lett., 1994, 35, 7037.
7 D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996, 118, 9440; R. L. Cicero and J. D. Protasiewicz, Organometallics, 1995, 14, 4792; H.-M. Gau, C.-S. Lee, C.-C. Lin, M.-K. Jiang, Y.-C. Ho and C.-N. Kuo, J. Am. Chem. Soc., 1996, 118, 2936.

8 Y.-J. Kim, K. Osakada, A. Takenaka and A. Yamamoto, J. Am. Chem. Soc., 1990, 112, 1096; A. L. Seligson, R. L. Cowan and W. C. Trogler, Inorg. Chem., 1991, 30, 3371.
9 Z. Otwinowski, University of Texas, Southwestern Medical Center. The program is available from Mac Science Co.

[^0]: * To receive any correspondence.
 \dagger This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see J. Chem. Research (S), 1999, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

